Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101.024
Filter
1.
Sci Rep ; 14(1): 8395, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600099

ABSTRACT

The aim of the present study was to investigate retinal microcirculatory and functional metabolic changes in patients after they had recovered from a moderate to severe acute COVID-19 infection. Retinal perfusion was quantified using laser speckle flowgraphy. Oxygen saturation and retinal calibers were assessed with a dynamic vessel analyzer. Arterio-venous ratio (AVR) was calculated based on retinal vessel diameter data. Blood plasma samples underwent mass spectrometry-based multi-omics profiling, including proteomics, metabolomics and eicosadomics. A total of 40 subjects were included in the present study, of which 29 had recovered from moderate to severe COVID-19 within 2 to 23 weeks before inclusion and 11 had never had COVID-19, as confirmed by antibody testing. Perfusion in retinal vessels was significantly lower in patients (60.6 ± 16.0 a.u.) than in control subjects (76.2 ± 12.1 a.u., p = 0.006). Arterio-venous (AV) difference in oxygen saturation and AVR was significantly lower in patients compared to healthy controls (p = 0.021 for AVR and p = 0.023 for AV difference in oxygen saturation). Molecular profiles demonstrated down-regulation of cell adhesion molecules, NOTCH3 and fatty acids, and suggested a bisphasic dysregulation of nitric oxide synthesis after COVID-19 infection. The results of this study imply that retinal perfusion and oxygen metabolism is still significantly altered in patients well beyond the acute phase of COVID-19. This is also reflected in the molecular profiling analysis of blood plasma, indicating a down-regulation of nitric oxide-related endothelial and immunological cell functions.Trial Registration: ClinicalTrials.gov ( https://clinicaltrials.gov ) NCT05650905.


Subject(s)
COVID-19 , Oxygen , Humans , Oxygen/metabolism , Microcirculation , Nitric Oxide , Oximetry/methods , Retinal Vessels , Perfusion , Blood Proteins , Lipids
2.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664801

ABSTRACT

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Subject(s)
Caveolin 1 , Diet, High-Fat , Endothelial Cells , Endothelium, Vascular , Mice, Inbred C57BL , Nitric Oxide Synthase Type III , Vasodilation , Animals , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/enzymology , Endothelium, Vascular/drug effects , Male , Nitric Oxide Synthase Type III/metabolism , Vasodilation/drug effects , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Caveolin 1/metabolism , Caveolin 1/deficiency , Caveolin 1/genetics , Cells, Cultured , Sterol Esterase/metabolism , Sterol Esterase/genetics , Mice, Knockout , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/physiopathology , Signal Transduction , Mice , Aorta/enzymology , Aorta/physiopathology , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Nitric Oxide/metabolism , Obesity/enzymology , Obesity/physiopathology , Obesity/metabolism , Ubiquitination
3.
ACS Sens ; 9(4): 1682-1705, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38593007

ABSTRACT

Gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing. Electrochemical methods demonstrate good sensitivity, adequate selectivity, and the most well-developed potential for the multianalyte detection of gasotransmitters. Future research will likely address challenges with sensor stability and biocompatibility (i.e., sensor lifetime and cytotoxicity), sensor miniaturization, and multianalyte detection in biological settings.


Subject(s)
Carbon Monoxide , Electrochemical Techniques , Gasotransmitters , Hydrogen Sulfide , Nitric Oxide , Gasotransmitters/analysis , Electrochemical Techniques/methods , Carbon Monoxide/analysis , Nitric Oxide/analysis , Hydrogen Sulfide/analysis , Humans , Biosensing Techniques/methods , Animals
4.
Cell Rep ; 43(4): 114091, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607914

ABSTRACT

Nitric oxide (NO) is a gasotransmitter required in a broad range of mechanisms controlling plant development and stress conditions. However, little is known about the specific role of this signaling molecule during lipid storage in the seeds. Here, we show that NO is accumulated in developing embryos and regulates the fatty acid profile through the stabilization of the basic/leucine zipper transcription factor bZIP67. NO and nitro-linolenic acid target and accumulate bZIP67 to induce the downstream expression of FAD3 desaturase, which is misregulated in a non-nitrosylable version of the protein. Moreover, the post-translational modification of bZIP67 is reversible by the trans-denitrosylation activity of peroxiredoxin IIE and defines a feedback mechanism for bZIP67 redox regulation. These findings provide a molecular framework to control the seed fatty acid profile caused by NO, and evidence of the in vivo functionality of nitro-fatty acids during plant developmental signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic-Leucine Zipper Transcription Factors , Fatty Acids , Nitric Oxide , Peroxiredoxins , Fatty Acids/metabolism , Arabidopsis Proteins/metabolism , Peroxiredoxins/metabolism , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Nitric Oxide/metabolism , Gene Expression Regulation, Plant , Seeds/metabolism , Lipid Metabolism , Protein Processing, Post-Translational
5.
Physiol Rep ; 12(8): e16021, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38639714

ABSTRACT

We assessed the combined effect of superoxide and iNOS inhibition on microvascular function in non-Hispanic Black and non-Hispanic White participants (n = 15 per group). Participants were instrumented with four microdialysis fibers: (1) lactated Ringer's (control), (2) 10 µM tempol (superoxide inhibition), (3) 0.1 mM 1400 W (iNOS inhibition), (4) tempol + 1400 W. Cutaneous vasodilation was induced via local heating and NO-dependent vasodilation was quantified. At control sites, NO-dependent vasodilation was lower in non-Hispanic Black (45 ± 9% NO) relative to non-Hispanic White (79 ± 9% NO; p < 0.01; effect size, d = 3.78) participants. Tempol (62 ± 16% NO), 1400 W (78 ± 12% NO) and tempol +1400 W (80 ± 13% NO) increased NO-dependent vasodilation in non-Hispanic Black participants relative to control sites (all p < 0.01; d = 1.22, 3.05, 3.03, respectively). The effect of 1400 W (p = 0.04, d = 1.11) and tempol +1400 W (p = 0.03, d = 1.22) was greater than tempol in non-Hispanic Black participants. There was no difference between non-Hispanic Black and non-Hispanic White participants at 1400 W or tempol + 1400 W sites. These data suggest iNOS has a greater effect on NO-dependent vasodilation than superoxide in non-Hispanic Black participants.


Subject(s)
Cyclic N-Oxides , Imines , Nitric Oxide , Spin Labels , Vasodilation , Humans , Young Adult , Nitric Oxide/pharmacology , Regional Blood Flow , Skin/blood supply , Superoxides , Vasodilation/physiology , Black or African American , White
6.
Acta Otorhinolaryngol Ital ; 44(2): 100-112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651552

ABSTRACT

The goal of this meta-analysis was to study nasal nitric oxide (nNO) measurements in allergic rhinitis (AR) and non-allergic rhinitis (non-AR). The protocol was registered with PROSPERO (no: CRD4202124828). Electronic databases from PubMed, Google Scholar, Scopus, Web of Science, and Cochrane were all thoroughly searched and studies were chosen based on the qualifying requirements. The quality of the studies was evaluated by Joanna Briggs Institute evaluation tools, and publication bias using funnel plots. The meta-analysis included 18 studies, whereas the systematic review included 20 studies, totaling 3097 participants (1581 AR, 458 non-AR, and 1058 healthy/control). Patients with AR had significantly greater nNO levels than the control group, although this did not change significantly before or after treatment. AR patients had significantly greater nNO levels than non-AR patients, but there was no significant difference between non-AR patients and healthy controls. Nineteen of the studies were of high quality and the remaining one was of moderate quality. nNO measurement has a promising role in the management of AR and non-AR patients, but more investigations are needed to document clinical benefits.


Subject(s)
Nitric Oxide , Rhinitis, Allergic , Rhinitis , Humans , Nitric Oxide/analysis , Nitric Oxide/metabolism , Rhinitis, Allergic/diagnosis
7.
J Nat Prod ; 87(4): 935-947, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38575516

ABSTRACT

We report on the use of nitric oxide-mediated transcriptional activation (NOMETA) as an innovative means to detect and access new classes of microbial natural products encoded within silent biosynthetic gene clusters. A small library of termite nest- and mangrove-derived fungi and actinomyces was subjected to cultivation profiling using a miniaturized 24-well format approach (MATRIX) in the presence and absence of nitric oxide, with the resulting metabolomes subjected to comparative chemical analysis using UPLC-DAD and GNPS molecular networking. This strategy prompted study of Talaromyces sp. CMB-TN6F and Coccidiodes sp. CMB-TN39F, leading to discovery of the triterpene glycoside pullenvalenes A-D (1-4), featuring an unprecedented triterpene carbon skeleton and rare 6-O-methyl-N-acetyl-d-glucosaminyl glycoside residues. Structure elucidation of 1-4 was achieved by a combination of detailed spectroscopic analysis, chemical degradation, derivatization and synthesis, and biosynthetic considerations.


Subject(s)
Aminoglycosides , Isoptera , Nitric Oxide , Triterpenes , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Molecular Structure , Isoptera/microbiology , Aminoglycosides/pharmacology , Australia , Transcriptional Activation/drug effects , Fungi/metabolism , Talaromyces/chemistry , Talaromyces/metabolism , Actinomyces/metabolism , Actinomyces/drug effects
8.
J Am Heart Assoc ; 13(8): e033503, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38606732

ABSTRACT

BACKGROUND: Cardiac donation after circulatory death is a promising option to increase graft availability. Graft preservation with 30 minutes of hypothermic oxygenated perfusion (HOPE) before normothermic machine perfusion may improve cardiac recovery as compared with cold static storage, the current clinical standard. We investigated the role of preserved nitric oxide synthase activity during HOPE on its beneficial effects. METHODS AND RESULTS: Using a rat model of donation after circulatory death, hearts underwent in situ ischemia (21 minutes), were explanted for a cold storage period (30 minutes), and then reperfused under normothermic conditions (60 minutes) with left ventricular loading. Three cold storage conditions were compared: cold static storage, HOPE, and HOPE with Nω-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor). To evaluate potential confounding effects of high coronary flow during early reperfusion in HOPE hearts, bradykinin was administered to normalize coronary flow to HOPE levels in 2 additional groups (cold static storage and HOPE with Nω-nitro-L-arginine methyl ester). Cardiac recovery was significantly improved in HOPE versus cold static storage hearts, as determined by cardiac output, left ventricular work, contraction and relaxation rates, and coronary flow (P<0.05). Furthermore, HOPE attenuated postreperfusion calcium overload. Strikingly, the addition of Nω-nitro-L-arginine methyl ester during HOPE largely abolished its beneficial effects, even when early reperfusion coronary flow was normalized to HOPE levels. CONCLUSIONS: HOPE provides superior preservation of ventricular and vascular function compared with the current clinical standard. Importantly, HOPE's beneficial effects require preservation of nitric oxide synthase activity during the cold storage. Therefore, the application of HOPE before normothermic machine perfusion is a promising approach to optimize graft recovery in donation after circulatory death cardiac grafts.


Subject(s)
Heart Transplantation , Animals , Rats , Humans , Heart Transplantation/methods , Nitric Oxide , Tissue Donors , Perfusion/methods , Nitric Oxide Synthase
9.
ACS Appl Mater Interfaces ; 16(15): 18252-18267, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38581365

ABSTRACT

Nitric oxide (NO) intervenes, that is, a potential treatment strategy, and has attracted wide attention in the field of tumor therapy. However, the therapeutic effect of NO is still poor, due to its short half-life and instability. Therapeutic concentration ranges of NO should be delivered to the target tissue sites, cell, and even subcellular organelles and to control NO generation. Mitochondria have been considered a major target in cancer therapy for their essential roles in cancer cell metabolism and apoptosis. In this study, mesoporous silicon-coated gold nanorods encapsulated with a mitochondria targeted and the thermosensitive lipid layer (AuNR@MSN-lipid-DOX) served as the carrier to load NO prodrug (BNN6) to build the near-infrared-triggered synergetic photothermal NO-chemotherapy platform (AuNR@MSN(BNN6)-lipid-DOX). The core of AuNR@MSN exhibited excellent photothermal conversion capability and high loading efficiency in terms of BNN6, reaching a high value of 220 mg/g (w/w), which achieved near-infrared-triggered precise release of NO. The outer biocompatible lipid layer, comprising thermosensitive phospholipid DPPC and mitochondrial-targeted DSPE-PEG2000-DOX, guided the whole nanoparticle to the mitochondria of 4T1 cells observed through confocal microscopy. In the mitochondria, the nanoparticles increased the local temperature over 42 °C under NIR irradiation, and a high NO concentration from BNN6 detected by the NO probe and DSPE-PEG2000-DOX significantly inhibited 4T1 cancer cells in vitro and in vivo under the synergetic photothermal therapy (PTT)-NO therapy-chemotherapy modes. The built NIR-triggered combination therapy nanoplatform can serve as a strategy for multimodal collaboration.


Subject(s)
Drug Delivery Systems , Nanoparticles , Phosphatidylethanolamines , Polyethylene Glycols , Doxorubicin/pharmacology , Nitric Oxide , Phototherapy , Nanoparticles/therapeutic use , Mitochondria , Lipids , Cell Line, Tumor
10.
J Toxicol Environ Health A ; 87(12): 497-515, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38619158

ABSTRACT

One prominent aspect of Parkinson's disease (PD) is the presence of elevated levels of free radicals, including reactive oxygen species (ROS). Syagrus coronata (S. coronata), a palm tree, exhibits antioxidant activity attributed to its phytochemical composition, containing fatty acids, polyphenols, and flavonoids. The aim of this investigation was to examine the potential neuroprotective effects of S. coronata fixed oil against rotenone-induced toxicity using Drosophila melanogaster. Young Drosophila specimens (3-4 d old) were exposed to a diet supplemented with rotenone (50 µM) for 7 d with and without the inclusion of S. coronata fixed oil (0.2 mg/g diet). Data demonstrated that rotenone exposure resulted in significant locomotor impairment and increased mortality rates in flies. Further, rotenone administration reduced total thiol levels but elevated lipid peroxidation, iron (Fe) levels, and nitric oxide (NO) levels while decreasing the reduced capacity of mitochondria. Concomitant administration of S. coronata exhibited a protective effect against rotenone, as evidenced by a return to control levels of Fe, NO, and total thiols, lowered lipid peroxidation levels, reversed locomotor impairment, and enhanced % cell viability. Molecular docking of the oil lipidic components with antioxidant enzymes showed strong binding affinity to superoxide dismutase (SOD) and glutathione peroxidase (GPX1) enzymes. Overall, treatment with S. coronata fixed oil was found to prevent rotenone-induced movement disorders and oxidative stress in Drosophila melanogaster.


Subject(s)
Movement Disorders , Rotenone , Animals , Drosophila melanogaster , Molecular Docking Simulation , Oxidative Stress , Antioxidants/pharmacology , Nitric Oxide/metabolism
11.
Eur J Pharmacol ; 971: 176556, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574840

ABSTRACT

AIMS: Endothelial-mesenchymal transition (EndMT) is a crucial pathological process contributing to cardiac fibrosis. Bradykinin has been found to protect the heart against fibrosis. Whether bradykinin regulates EndMT has not been determined. MATERIALS AND METHODS: Rats were subjected to ligation of the left anterior descending coronary artery for 1 h and subsequent reperfusion to induce cardiac ischemia-reperfusion (IR) injury. Bradykinin (0.5 µg/h) was infused by an osmotic pump implanted subcutaneously at the onset of reperfusion. Fourteen days later, the functional, histological, and molecular analyses were performed to investigate the changes in cardiac fibrosis and EndMT. Human coronary artery endothelial cells were utilized to determine the molecular mechanisms in vitro. RESULTS: Bradykinin treatment improved cardiac function and decreased fibrosis following cardiac IR injury, accompanied by ameliorated EndMT and increased nitric oxide (NO) production. In vitro experiments found that bradykinin mitigated transforming growth factor ß1 (TGFß1)-induced EndMT. Significantly, the bradykinin B2 receptor antagonist or endothelial nitric oxide synthase inhibitor abolished the effects of bradykinin on EndMT inhibition, indicating that the bradykinin B2 receptor and NO might mediate the effects of bradykinin on EndMT inhibition. CONCLUSION: Bradykinin plays an essential role in the process of cardiac fibrosis. Bradykinin preserves the cellular signature of endothelial cells, preventing them from EndMT following cardiac IR injury, possibly mediated by bradykinin B2 receptor activation and NO production.


Subject(s)
Cardiomyopathies , Reperfusion Injury , Humans , Rats , Animals , Endothelial Cells , Bradykinin/pharmacology , Bradykinin/metabolism , 60483 , Cardiomyopathies/metabolism , Receptors, Bradykinin/metabolism , Nitric Oxide/metabolism , Reperfusion Injury/metabolism , Fibrosis , Epithelial-Mesenchymal Transition
12.
Food Chem Toxicol ; 187: 114634, 2024 May.
Article in English | MEDLINE | ID: mdl-38582344

ABSTRACT

The purpose of this study is to determine the effects of grayanotoxin in mad honey on ovarian tissue folliculogenesis in terms of cell death and nitric oxide expression. Three groups of 18 female Sprague-Dawley rats were formed. The first group received mad honey (80 mg/kg), the second group received normal honey (80 mg/kg), and the third group was the control. The first and second groups received normal and mad honey by oral gavage for 30 days before being sacrificed under anesthesia. Caspase 3 immunostaining showed a moderate to strong response, particularly in the mad honey group. In the mad honey group, immunostaining for caspase 8 and caspase 9 revealed a moderate immunoreaction in the granulosa cells of the Graaf follicles. The majority of Graaf follicles exhibited TUNEL positive in the mad honey group. The iNOS immunoreaction revealed a high level of expression in the mad honey group. In all three groups, eNOS immunostaining showed weak reactivity. According to the findings of apoptotic and nitric oxide marker expression, it was determined that mad honey may result in an increase in follicular atresia in ovarian follicles when compared to normal honey and control groups.


Subject(s)
Diterpenes , Honey , Ovary , Rats , Female , Animals , Rats, Sprague-Dawley , Nitric Oxide , Follicular Atresia , Oxidative Stress , Apoptosis , Granulosa Cells
13.
Aging Male ; 27(1): 2336627, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38567396

ABSTRACT

Penile erection (PE) is a hemodynamic event that results from a neuroendocrine process, and it is influenced by the cardiovascular status of the patient. However, it may also modulate an individual's cardiovascular events. The present study provides the mechanisms involved in the association of PE and cardiovascular function. Erection upsurges the cardiac rate, blood pressure, and oxygen uptake. Sex-enhancing strategies, such as phosphodiesterase inhibitors, alprostadil, and testosterone also promote vasodilatation and cardiac performance, thus preventing myocardial infarction. More so, drugs that are used in the treatment of hypertensive heart diseases (such as angiotensin system inhibitors and ß-blockers) facilitate vasodilatation and PE. These associations have been linked with nitric oxide- and testosterone-dependent enhancing effects on the vascular endothelium. In addition, impaired cardiovascular function may negatively impact PE; therefore, impaired PE may be a pointer to cardiovascular pathology. Hence, evaluation of the cardiovascular status of an individual with erectile dysfunction (ED) is essential. Also, employing strategies that are used in maintaining optimal cardiac function may be useful in the management of ED.


Subject(s)
Erectile Dysfunction , Hypertension , Male , Humans , Penile Erection/physiology , Nitric Oxide/pharmacology , Nitric Oxide/physiology , Nitric Oxide/therapeutic use , Testosterone/therapeutic use , Testosterone/pharmacology
14.
Environ Health Perspect ; 132(4): 47003, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573329

ABSTRACT

BACKGROUND: Hypertension is a major cause of death worldwide. Although arsenic exposure has been associated with the risk of hypertension, this association appears nonuniform due to inconsistent results from studies conducted in different populations. Moreover, hypertension is a complex condition with multiple underlying mechanisms and factors. One factor is impaired production and bioavailability of vascular nitric oxide (NO). However, the implications of the effects of arsenic exposure on circulating NO and its association with hypertension in humans are largely unknown. OBJECTIVE: We investigated the dose-response relationship between arsenic exposure and hypertension with vascular NO levels as a potential mediator of arsenic-related hypertension in individuals exposed to a broad range of arsenic. METHODS: A total of 828 participants were recruited from low- and high-arsenic exposure areas in Bangladesh. Participants' drinking water, hair, and nail arsenic concentrations were measured by inductively coupled plasma mass spectroscopy. Hypertension was defined as a systolic blood pressure (SBP) value of ≥140 and a diastolic (DBP) value of ≥90 mmHg. Serum NO levels reflected by total serum nitrite concentrations were measured by immunoassay. A formal causal mediation analysis was used to assess NO as a mediator of the association between arsenic level and hypertension. RESULTS: Increasing concentrations of arsenic measured in drinking water, hair, and nails were associated with the increasing levels of SBP and DBP. The odds of hypertension were dose-dependently increased by arsenic even in participants exposed to relatively low to moderate levels (10-50µg/L) of water arsenic [odds ratios (ORs) and 95% confidence intervals (CIs): 2.87 (95% CI: 1.28, 6.44), 2.67 (95% CI: 1.27, 5.60), and 5.04 (95% CI: 2.71, 9.35) for the 10-50µg/L, 50.01-150µg/L, and >150µg/L groups, respectively]. Causal mediation analysis showed a significant mediating effect of NO on arsenic-related SBP, DBP, and hypertension. CONCLUSION: Increasing exposure to arsenic was associated with increasing odds of hypertension. The association was mediated through the reduction of vascular NO bioavailability, suggesting that impaired NO bioavailability was a plausible underlying mechanism of arsenic-induced hypertension in this Bangladeshi population. https://doi.org/10.1289/EHP13018.


Subject(s)
Arsenic , Drinking Water , Hypertension , Humans , Biological Availability , Arsenic/toxicity , Nitric Oxide , Bangladesh/epidemiology , Hypertension/chemically induced , Hypertension/epidemiology
15.
PLoS One ; 19(4): e0301268, 2024.
Article in English | MEDLINE | ID: mdl-38573928

ABSTRACT

Nitric oxide (NO) is involved in a variety of biological functions including blood vessel dilation and neurotransmitter release. In animals, NO has been demonstrated to affect multiple behavioral outcomes, such as memory performance and arousal, whereas this link is less explored in humans. NO is created in the paranasal sinuses and studies show that humming releases paranasal NO to the nasal tract and that NO can then cross the blood brain barrier. Akin to animal models, we hypothesized that this NO may traverse into the brain and positively affect information processing. In contrast to our hypothesis, an articulatory suppression memory paradigm and a speeded detection task found deleterious effects of humming while performing the task. Likewise, we found no effect of humming on emotional processing of photos. In a fourth experiment, participants hummed before each trial in a speeded detection task, but we again found no effect on response time. In conclusion, either nasal NO does not travel to the brain, or NO in the brain does not have the expected impact on cognitive performance and emotional processing in humans. It remains possible that NO influences other cognitive processes not tested for here.


Subject(s)
Nitric Oxide , Paranasal Sinuses , Humans , Nose , Emotions , Cognition
16.
MMW Fortschr Med ; 166(Suppl 4): 3-8, 2024 04.
Article in German | MEDLINE | ID: mdl-38575832

ABSTRACT

BACKGROUND: Diagnostic and therapeutic options for asthma have improved with asthma control and remission being of central importance. The RELEVANT study aimed for a nationwide snapshot of current asthma diagnosis and treatment in general practice and specialty care for identification of further aspects for optimization. METHOD: RELEVANT is a nationwide cross-sectional study using a structured questionnaire. This comprised 14 questions on asthma-related topics covering diagnostics and therapy. Participants were general practitioners/internal medicine specialists and pulmonologists. RESULTS: A total of 1,558 persons took part in the survey. Regarding relevant specific diagnostic procedures for asthma, GPs/internists almost exclusively mentioned pulse oximetry. Among the pulmonologists, fractional exhaled nitric oxide (FeNO) measurement was mentioned, among others. FeNO and blood eosinophils were only mentioned by the pulmonologists as diagnostic and treatment-relevant markers. A total of more than 60% of the GPs/internists surveyed stated that only around 25% or fewer of their patients would voluntarily report restrictions in their everyday lives. Regarding drug treatment, the majority stated that they recognized differences between various ICS/LABA combination therapies. CONCLUSIONS: The results indicate a need for optimization, particularly regarding asthma control. This involves both a better assessment by patients' everyday life restrictions and modern ways of assessing asthma control in cooperation between GPs/internal medicine specialists and pulmonologists. One fifth of respondents do not see any differences between various ICS/LABA combinations in daily practice, although there are pharmacodynamic and pharmacokinetic differences.


Subject(s)
Asthma , Nitric Oxide , Humans , Cross-Sectional Studies , Nitric Oxide/analysis , Nitric Oxide/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Asthma/diagnosis , Asthma/drug therapy , Germany , Administration, Inhalation
17.
Folia Parasitol (Praha) ; 712024 Apr 04.
Article in English | MEDLINE | ID: mdl-38628099

ABSTRACT

Susceptibility to COVID-19, the most devastating global pandemic, appears to vary widely across different population groups. Exposure to toxoplasmosis has been proposed as a theory to explain the diversity of these populations. The aim of the present study was to investigate the possible association between latent toxoplasmosis and COVID-19 and its probable correlation with markers of oxidative stress, C-reactive protein (CRP) and ferritin. In a case-control study, blood samples were collected from 91 confirmed (48 non-pneumonic; NP, and 43 pneumonic; P) COVID-19 patients and 45 healthy controls. All participants were tested for IgG anti-Toxoplasma gondii antibodies and oxidative stress markers (nitric oxide [NO], superoxide dismutase [SOD] and reduced glutathione [GSH]), and CRP and serum ferritin levels were determined. In COVID-19 patients, IgG anti-T. gondii antibodies were found in 54% compared to 7% in the control group, with the difference being statistically significant (P ˂ 0.001). However, no significant correlation was found between the severity of COVID-19 and latent T. gondii infection. Latent toxoplasmosis had a strong influence on the risk of COVID-19. NO and SOD levels were significantly increased in COVID-19 patients, while GSH levels decreased significantly in them compared to control subjects (P ˂ 0.001 for both values). CRP and ferritin levels were also significantly elevated in P COVID-19 patients infected with toxoplasmosis. This is the first study to look at the importance of oxidative stress indicators in co-infection between COVID-19 and T. gondii. The high prevalence of latent toxoplasmosis in COVID-19 suggests that T. gondii infection can be considered a strong indicator of the high risk of COVID-19.


Subject(s)
COVID-19 , Toxoplasmosis , Humans , Case-Control Studies , Immunoglobulin G , Toxoplasmosis/epidemiology , Biomarkers , Antibodies, Protozoan , Oxidative Stress , Nitric Oxide , Superoxide Dismutase , Ferritins , Seroepidemiologic Studies , Risk Factors
18.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612462

ABSTRACT

An increase in the level of nitric oxide (NO) plays a key role in regulating the human cardiovascular system (lowering blood pressure, improving blood flow), glycemic control in type 2 diabetes, and may help enhance exercise capacity in healthy individuals (including athletes). This molecule is formed by endogenous enzymatic synthesis and the intake of inorganic nitrate (NO3-) from dietary sources. Although one of the most well-known natural sources of NO3- in the daily diet is beetroot (Beta vulgaris), this review also explores other plant sources of NO3- with comparable concentrations that could serve as ergogenic aids, supporting exercise performance or recovery in healthy individuals. The results of the analysis demonstrate that red spinach (Amaranthus spp.) and green spinach (Spinacia oleracea) are alternative natural sources rich in dietary NO3-. The outcomes of the collected studies showed that consumption of selected alternative sources of inorganic NO3- could support physical condition. Red spinach and green spinach have been shown to improve exercise performance or accelerate recovery after physical exertion in healthy subjects (including athletes).


Subject(s)
Celosia , Diabetes Mellitus, Type 2 , Nitrates , Humans , Nitrates/pharmacology , Exercise , Glycemic Control , Nitric Oxide , Dietary Supplements
19.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612644

ABSTRACT

Antimicrobial peptides (AMPs), as immune effectors synthesized by a variety of organisms, not only constitute a robust defense mechanism against a broad spectrum of pathogens in the host but also show promising applications as effective antimicrobial agents. Notably, insects are significant reservoirs of natural AMPs. However, the complex array of variations in types, quantities, antimicrobial activities, and production pathways of AMPs, as well as evolution of AMPs across insect species, presents a significant challenge for immunity system understanding and AMP applications. This review covers insect AMP discoveries, classification, common properties, and mechanisms of action. Additionally, the types, quantities, and activities of immune-related AMPs in each model insect are also summarized. We conducted the first comprehensive investigation into the diversity, distribution, and evolution of 20 types of AMPs in model insects, employing phylogenetic analysis to describe their evolutionary relationships and shed light on conserved and distinctive AMP families. Furthermore, we summarize the regulatory pathways of AMP production through classical signaling pathways and additional pathways associated with Nitric Oxide, insulin-like signaling, and hormones. This review advances our understanding of AMPs as guardians in insect immunity systems and unlocks a gateway to insect AMP resources, facilitating the use of AMPs to address food safety concerns.


Subject(s)
Antimicrobial Peptides , Food Safety , Humans , Animals , Phylogeny , Insecta , Nitric Oxide
20.
BMC Pulm Med ; 24(1): 178, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622520

ABSTRACT

BACKGROUND: Asthma is a common disease characterized by chronic inflammation of the lower airways, bronchial hyperactivity, and (reversible) airway obstruction. The Global Initiative of Asthma Guideline recommends a flowchart to diagnose asthma with first-step spirometry with reversibility and a bronchial challenge test (BPT) with histamine or methacholine as a second step [1]. The BPT is considered burdensome, time-consuming for patients and staff, can cause side effects, and is expensive. In addition, this test strongly encumbers lung function capacity. Elevated Nitric Oxide (NO) is associated with airway eosinophilic inflammation in asthma patients and can be measured in exhaled air with the Fractional exhaled (Fe) NO-test. This low-burden FeNO-test could be used as an 'add-on' test in asthma diagnostics [2, 3]. METHODS AND ANALYSIS: This multi-center prospective study (Trial number: NCT06230458) compares the 'standard asthma diagnostic work-up' (spirometry with reversibility and BPT) to the 'new asthma diagnostics work-up' (FeNO-test as an intermediate step between the spirometry with reversibility and the BPT), intending to determine the impact of the FeNO-based strategy, in terms of the number of avoided BPTs, cost-effectiveness and reduced burden to the patient and health care. The cost reduction of incorporating the FeNO-test in the new diagnostic algorithm will be established by the number of theoretically avoided BPT. The decrease in burden will be studied by calculating differences in the Visual Analogue Scale (VAS) -score and Asthma Quality of Life Questionnaire (AQLQ) -score after the BPT and FeNO-test with an independent T-test. The accuracy of the FeNO-test will be calculated by comparing the FeNO-test outcomes to the (gold standard) BPTs outcomes in terms of sensitivity and specificity. The intention is to include 171 patients. ETHICS AND DISSEMINATION: The local medical ethics committee approved the proposed study and is considered a low-burden and risk-low study. The local medical ethics committee registration number: R23.005. STRENGTHS AND LIMITATIONS OF THIS STUDY: Strengths: This is the first study that investigates the value of the FeNO-test (cut off ≥ 50 ppb) as an add-on test, to determine the impact of the FeNO-based strategy, in terms of the number of avoided BPTs, cost-effectiveness, and reduced burden on the patient and health care. LIMITATIONS: High FeNO levels may also be observed in other diseases such as eosinophilic chronic bronchitis and allergic rhinitis. The FeNO-test can be used to rule in a diagnosis of asthma with confidence, however, due to the poor sensitivity it is not suitable to rule out asthma.


Subject(s)
Asthma , Bronchitis, Chronic , Humans , Fractional Exhaled Nitric Oxide Testing , Prospective Studies , Quality of Life , Breath Tests , Asthma/drug therapy , Nitric Oxide , Inflammation , Multicenter Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...